7.
$$\lim_{x \to 2} \left(\frac{\sqrt{1 - \cos\{2(x - 2)\}}}{x - 2} \right)$$
 [2011]

- (a) equals $\sqrt{2}$ (b) equals $-\sqrt{2}$
- (c) equals $\frac{1}{\sqrt{2}}$ (d) does not exist

Solution: -

7. **(d)**
$$\lim_{x \to 2} \frac{\sqrt{1 - \cos\{2(x - 2)\}}}{x - 2} = \lim_{x \to 2} \frac{\sqrt{2} \left| \sin(x - 2) \right|}{x - 2}$$

L.H.L. =
$$\lim_{x \to 2^{-}} \frac{\sqrt{2} \sin(x-2)}{(x-2)} = -\sqrt{2}$$

R.H.L. =
$$\lim_{x \to 2^+} \frac{\sqrt{2} \sin(x-2)}{(x-2)} = \sqrt{2}$$

Thus L.H.L. ≠ R.H.L.

Hence, $\lim_{x\to 2} \frac{\sqrt{1-\cos\{2(x-2)\}}}{x-2}$ does not exist.